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SUMMARY 

A finite element stream function formulation is presented for the solution to the two-dimensional 
double-glazing problem. Laminar flow with constant properties is considered and the Boussinesq 
approximation used. A restricted variational principle is used, in conjunction with a triangular finite 
element of C’ continuity, to discretize the two coupled governing partial differential equations (4th 
order in stream function and second order in temperature). The resulting non-linear system of 
equations is solved in a segregated (decoupled) manner by the Newton-Raphson linearizing technique. 

Results are produced for the standard test case of an upright square cavity. These are for Rayleigh 
numbers in the range 103-10s, with a Prandtl number of 0-71. Comparisons are made with benchmark 
results presented at the 1981 International Comparison study in Venice. In the discussion of results, 
emphasis is placed on the variation of local Nusselt number along the isothermal walls, particularly 
near the corner. This reveals a noticeable source of error in the evaluation of the maximum Nusselt 
number by lower order discretization methods. 

KEY WORDS Natural Convection Stream Function Finite Element Formulation C1 Continuity Truncated 
Quintic Restricted Variational Principle. 

1. INTRODUCTION 

The occurrence of natural convection in many practical flow situations, its influence on the 
transport processes, and the need for a quantitative account of its behaviour requires little 
introduction. 

In most cases of environmental and engineering interest natural convection gives rise to 
turbulent flows. However, as a logical step in the direction towards modelling these flows, 
one requires to be able to solve the less complex laminar natural convection flows. It is for 
this reason that laminar natural convection has attracted considerable recent interest. The 
most popular test case for the solution of these flows has been the two-dimensional 
‘double-glazing’ problem. The attractive features of this test problem are that it has a simple 
geometry, it has no singularities and buoyancy is the only driving mechanism for the flow. 

Numerical simulations of the double-glazing problem have been extremely varied in their 
choice of mathematical model, formulation strategy, discretization scheme and solution 
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strategy. The mathematical model used by most authors today is the constant fluid property 
model with the Boussinesq approximation for density changes. This model, which is 
particularly convenient for comparison purposes, is presented in the next section. There are a 
number of basic ways in which it can be formulated. Three of these consist of formulating the 
hydrodynamic part of the problem in terms of the ‘primitive variables’ (u, p), in terms of 
stream function and vorticity (4-0) or in terms of stream function (4) only. 

The primitive variables formulation strategy, although very successful and indeed popular 
with many authors, suffers from difficulties in the numerical solution to the discretized system 
of equations. The difficulties are associated with the incompressible version of the governing 
equations. In this version the pressure variable appears in an implicit fashion in the 
governing equations. As a direct result of this, certain discretizations of the above mentioned 
governing equations produce ‘free pressure modes’. These ‘free modes’ are readily excited by 
machine round-off and contaminate pressure (and in some instances velocity) solutions. 
Other discretizations on the other hand do not produce spurious pressure solutions, but fail 
to strike an adequate balance between the number of vector momentum and continuity 
equations. 

The interesting and methodical studies of Sani et al’ and Jackson and Cliffe” demonstrate 
and discuss the above mentioned problems in the context of the Galerkin finite element 
method (GFEM). In these, the causes of the problems are pointed out and techniques are 
devised for their suppression or elimination by way of mixed interpolations, proper choices 
of elements, element distributions and boundary conditions. 

The stream function-vorticity (4-0) model does not suffer from the above limitations. It 
has, however, a unique restriction, this being due to the fact that vorticity boundary values 
are not known a priori. In the majority of such sir nu la ti on^,^.^ approximate vorticity 
boundary values are arrived at, during the course of the solution, by extrapolating to the 
boundary using the latest available field variables. These extrapolation techniques are 
generally not consistent with the overall numerical scheme. That is, in such cases non-zero 
velocities at no-slip impermeable boundaries may result if the same extrapolation method 
were to be applied to the field variables for obtaining boundary velocities. A recent 
development in this area is the work of Stevens.’ In his G E M  simulation of the double- 
glazing problem, he dispenses with the conventional extrapolation methods by providing 
gradient boundary conditions for vorticity which are consistent with the overall G E M .  This 
‘weak’ imposition method of the vorticity boundary conditions, however, is unique to the 
GFEM and does not extend to other numerical methods. 

The stream function (4) formulation strategy is free of the difficulties plaguing the (u, p) 
and (4-0) formulation strategies. Most fluid problems posed in this fashion have well 
defined boundary conditions and the discretized systems of equations associated with this 
formulation strategy do not tolerate ‘free modes’. However, very few contributions have 
appeared in the literature which use this strategy, despite the above mentioned attractive 
features. The fourth order stream function partial differential equation resulting from this 
strategy seems to have deterred many authors from attempting a numerical solution. In the 
finite element context, Tuann and O l ~ o n ~ * ~  have solved the hydrodynamic equations using a 
restricted variational principle in conjunction with an 18 degree of freedom (DOF) triangular 
finite element of the C’ continuity class. They have applied this method to both the 
isothermal flow in a driven cavity6 and around a circular ~yl inder .~ 

In the present paper the method of Tuann and Olson is extended to include the energy 
equation to allow for the solution of natural convection. The way in which this is done is 
given in Section 3 .  The results of the present simulation are presented in Section 6. In 
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Section 7 comparisons are made between the present results and the benchmark results of de 
Vahl Davis.* The benchmark solution is a result of an international comparison exercise’ 
which attracted worldwide interest. 

2. MATHEMATICAL MODEL AND FORMULATION STRATEGY 

Figure 1 indicates the problem in question; although the computed results presented in this 
paper are restricted to 4 = 0.0 and 1 = d. The complete mathematical model for describing 
laminar natural convection in the box of Figure 1 can be arrived at from the statements of 
conservation of mass, momentum and energy in conjunction with constitutive equations 
which close the system by describing the state of the fluid. The mathematical model 
employed here is the simplified steady state version of the above statements with constant 
fluid properties and the Boussinesq approximation for density changes. The resulting 
dimensionless differential equations are as follows: 

Gr% cos C$ + V2u u-+v-= --- au au 
ax a y  ax 

av a~ ap 
ax ay a y  

u-+v-= ---Gr%sinC$+V2v 

au av -+--=0 
ax a y  

a0 ae I u -+ v - = - V28 
ax ay Pr 

where the symbols have their conventional meanings, p is the pressure deviation from 
hydrostatic, Gr = gP(T, - Tc)d3/v2 is the Grashoff number, Pr = vla is the Prandtl number, 

is the thermal expansion coefficient of the fluid, Y and a are the diffusion coefficients for 
momentum and heat. Note that Ra = Gr. Pr is the Rayleigh number. 

-=o  aT  
Y bn 

X 

TH 

Figure 1. The square cavity 
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The non-dimensionalization scheme used in equations (1) is that used by Taborrok and 
 lit^,^ which gives non-dimensional velocities in Reynolds number form (Udlv where U 
denotes a dimensional velocity). Temperatures are referenced to the cold wall temperature, 
i.e. 8 = ( T -  Tc)/(TH - Tc). For comparison purposes, however, the results of this study are 
presented in a form consistent with the non-dimensionalization of Mallinson and de Vahl 
Davis" (i.e. u = Ud/a). 

The system of equations (1) is in primitive variable form (u, u, p, 8). It is possible to 
reformulate this in stream function-vorticity (+-a, O),  or stream function (4, 8) form. Here 
the latter formulation strategy is adopted. By defining the stream function as u = +,, u = -+,, 
one arrives at 

V4+- +,(V21&), + +,(V2J/jy - Gr(8, cos 4 - 0, sin 4) = 0 (24 
1 

Pr ox+, - 8,+, -- V28 = 0 

where subscripts denote partial derivatives. It is clearly seen here that a reduction in the 
number of variables of the governing system of equations (1) has been gained at the expense 
of admitting higher order derivatives in (2). 

3. DISCRETIZATION SCHEME AND SOLUTION STRATEGY 

There are no exact variational principles for the two equations of (2); this is due to their 
non-self adjoint convection terms. Consequently an ad hoc principle is used here, which is 
based on that developed by Tuann and O l ~ o n ~ , ~  for isothermal flow without buoyancy effects 
and is extended to the heat transfer situation. 

Multiplying (2a) by a virtual displacement 64 and (2b) by 68, integrating each over the 
flow domain a, and applying the Gauss-Green theorem yields: 

n 

+ I [V2& - V2+(n x V+)] 6+ dT - V2+ 13+" d r  = 0 (3a) b 
n R 

where r is the whole boundary of the domain R,n is the outward pointing unit normal 
vector, S is the variational operator and S = 8, cos 4 - 8, sin 4. For the test case in question 
there is no contribution from the line integrals of (3). This is due to the rigid boundary 
conditions of zero streamline (+ = 0 is arbitrarily defined on the connected walls), and no-slip 
impermeable walls in (3a) and to the rigid and natural boundary conditions of prescribed 
temperature on rl and insultation on T2 in (3b) where r = rl + T2. Therefore no variation is 

allowed in +(a+ = 0, oh r), in +,,(S+,, = 0, on r), nor in 8 on Tl(68 = 0, on rl); moreover - = 0 
on T2. 

a8 
an 
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Extracting the variational operator 6 from (3)  yields the two restricted functionals to be 
minimized, namely: 

n 

R n 

Note that the superscript (zero) in (4) denotes that the variable remains fixed when the 
variation is taken and is regarded to be a variable again only after the variation (hence the 
reason for calling it the restricted variational principle). Moreover the superscript (asterisk) 
denotes coupling terms which are fixed in the appropriate variation. 

This process then yields (2a) and (2b) as the Euler-Lagrange equations along with the rigid 
and natural boundary conditions previously specified. The 1 8 DOF truncated quintic triangu- 
lar finite element of the C1 continuity class was used to satisfy the C1 continuity requirement 
of functional (4a). This finite element was developed in the context of plate bending analysis 
where the biharmonic operator (i.e. 0") also appears in the system equations governing 
deflection. It is for this reason that the element is sometimes referred to as the high precision 
plate bending element. A brief introduction to this element and its nodal degrees of freedom 
is given in the next section. 

The same element is also used to describe the approximation for 8 in (4). Although 
convenient this is not strictly necessary, since the continuity requirement of (4b) is only Co. 
This was however done, because the problem in question is essentially a heat transfer one 
and an accurate representation of the heat problem is obviously desirable. In this way the 
temperature and the heat flux vector become C1 and Co continuous (respectively) in the 
solution domain and this is in contrast with most other simulations to the double glazing 
problem where Co and C-' basis functions are used for the temperature and the heat flux 
vector. 

Discretization of (4) is achieved by the following steps. Apply the functions of (4) to a 
typical element e. The integrations are now taken over the element area CY and the 
derivatives in (4) are taken with respect to a local co-ordinate system (&, q) defined in 
element e. The polynomial representations for + and 8 at the element level allow one to 
perform the analytical integrations over CY. The matrix expressions for I:(+, 4,") and 
I;(@, 8") thus obtained are expressed in terms of the local co-ordinates. Transform these 
expressions to the global (x, y )  co-ordinate system and assemble in the global matrices 
representing the discretized form of (4). This process is repeated for all the elements in the 
solution domain for assembling the complete discretized form of (4). Performing the 
restricted variation of the discretized equivalents of the two functionals in (4), with respect to 
the stream function and temperature respectively, yields for arbitrary nodal variations of SJI 
and 60 equations of the form 

Nr ..- 
1 M&=O, k = 1 , 2  ,..., NT (5b) 
i = l  
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JI and 8 are the global vectors representing stream function and temperature 'nodal values' 
consistent with the Hermitian basis functions given by the C1 class 18 DOF triangular finite 
element. That is, these vectors contain nodal values of the function, its two first derivatives 
and three second derivatives, a total of six DOF per vertex of the triangular finite element. 
M, K, Q and G are global operators representing diffusion, advection and body forces. NS is 
the size of the unknown stream function problem and similarly A T  is the global number of 
free degrees of freedom associated with the heat transfer part of the problem. 

A full account of the discretization procedure, beginning from (2) to (3, is given by 
Haroutunian," where the element level equivalents of the above advection, diffusion and 
buoyancy operators are also defined. The procedure for the hydrodynamic terms only can 
also be seen from Tuann and O l ~ e n . ~ * ~  

Equation (5b) is a non-symmetric system of linear equations, whereas (5a) is a set of 
N S x N S  non-linear algebraic equations for the NS global unknowns 4z. Applying the 
Newton-Raphson linearizing technique to (5a) leads to the following two sets of non- 
symmetric linear equations. 

where superscript n denotes the nth Newton-Raphson iteration, A& = +:+'-- 4; is the 
residual stream function vector, Fk(Jln) is the residual of the kth equation of (5a) at iteration 
level n, and the term in brackets in (6a) is the Jacobian matrix. 

System (6) is solved in a segregated (decoupled) fashion until JI and 8 converge to a 
solution, if at all. This solution strategy requires the starred terms in (4) to be treated as 
source terms, where at a given iteration level their value is prescribed from the previous 
iteration step. The criterion chosen for establishing convergence is a pre-assigned tolerance E 

which is defined as the ratio of the Euclidean norms of AJI and JI in percentage form, i.e. 
F = [ ~ ~ A J I ~ ~ / ~ ~ ~ ~ ]  x 100 per cent. The computer program developed for the numerical simulation 
allows for a variety of choices for damping during the course of the solution. Experience 
showed that a single Newton-Raphson iteration per equation step was appropriate for all 
flow situations, with the latest temperature value only damped for cases when the Rayleigh 
number was high. The degree of temperature update damping increased with increasing Ra. 
Further details on damping are given later. 

4. THE 18-DOF TRIANGULAR FINTIE ELEMENT 

In this section only a brief description of the 18-DOF truncated quintic triangular finite 
element is given. The expressions relating the nodal values of the field variables to the 
polynomial coefficients, and the way in which these expressions are derived are given more 
fully in Reference 12. 

The general field variable f (4 or 8 in the present problem) would require 21 polynomial 
terms, if it were to be represented locally in the element in terms of a complete quintic 
polynomial. Since the element can only allow for 18 degrees of freedom (i.e. six at each 
vertex) three additional constraints are thus needed. These additional conditions stipulate 
that the normal derivatives of the function f along each edge, fn, be a cubic function of the 
edgewise co-ordinate s, where (s, n) is a co-ordinate system local to each side of the triangle. 
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For a full account of how these conditions are enforced by truncating the complete quintic 
polynomial of f see Reference 13. 

Now the cubic polynomials f,, along each edge are uniquely defined by f, and f, at each of 
the two terminal vertices of that edge. In fact all the polynomial representations f7 fn, fs7 fss, fns 

are uniquely determined through the three sides of the triangular element, and only fix, is 
piecewise continuous, as it is the only derivative which depends on quantities specified at the 
ihird vertex of the triangle. 

From the hydrodynamic view point f = 11.1, f, = tangential velocity component along an 
element edge and fs is the normal velocity component on an element side. Since f, f, and fs 
are continuous through element sides then 11.1 and the velocity vector are everywhere 
continuous through the domain of solution, being C' and C" continuous, respectively. 

The same arguments as above can be used for the heat transfer part of the problem to 
show that the temperature and heat flux vector are C1 and Co continuous throughout a, 
respectively. 

5. BOUNDARY CONDTTIONS 

Figure 2 shows the (8 x 8) regular finite element mesh and the boundary conditions used in 
this study. 

The value of 8 is set to 1 and zero at the nodes on the isothermal walls AD and BC, 
respectively. The first and second derivatives of 0 with respect to the direction along these 
walls are also clearly zero and, following the arguments of the previous section, have been 
enforced at the boundary nodes to ensure that the variations of $,Ox and 0, are uniquely 
determined along the isothermal walls, and that at all points along these walls they retain 

c 
6x= 6,y= 0 
$I= ?#*= py = 0 

?#xy=?#Yv = 0 
Figure 2. The (8 x 8) regular finite element mesh and boundary conditions 
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their enforced values. Similarly on the insulated walls AB and DC the nodal values of 6, and 
Ox, are set to zero, which ensures that O, = Ox, = 0 is satisfied in pointwise fashion all along 
these walls. 

Further, on  all boundary nodes on the four walls conditions of impermeable and no-slip 
walls are rigidly satisfied by forcing both first derivatives of tlf to be zero at these nodes 
(a+/& = = 0). The value of + itself is arbitrarily defined as zero at all boundary nodes. 
Again here, it follows that the derivative of a+/& and the second derivative of + with 
respect to the direction along a wall are clearly zero (a2+/dx2 or d2+//ay2 = 0, and a2+/anas = 
a2+/r/axay = 0). Enforcing this at all boundary nodes ensures that tlf = 0, u = v = 0 is enforced 
pointwise along the entire boundary walls. 

Since there are no singularities in the domain and on the boundaries of the problem, one 
can conclude that the four corner nodes A,B,C and D, which are intersection points 
between two walls, have boundary conditions equal to the union of the boundary conditions 
from the two adjacent walls. Therefore at all four corner nodes + = tlfx = +, = +xx = +xy = 
tlf,,, =0, at nodes A and D O=1,0, = O n  =Ox, = 0  and at nodes B and C O = O x  = O n  =Oxy = 
0. 

It is important to note that, as a consequence of the above thermal boundary conditions, 
the gradient of the Nusselt number in the direction along the isothermal walls is zero at the 
two extremes of each isothermal wall. This is due to the fact that Ox, = 0 at the corners (i.e. 
dNu(x)/ax = 0, since the local Nusselt number at any point on the isothermal walls Nu(x)  = 
13,). One would therefore expect a good numerical simulation to the double glazing problem 
to depict this feature accurately. Moreover, it can be used as a further validation check for 
the results from various codes. 

6. NUMERICAL RESULTS 

Three regular finite element grids (4 x 4), (5  x 5 )  and (8 x 8) were used to obtain results for 
four flow situations (Ra = lo3, lo4 and lo5 with Pr = 0-71); an additional solution on the 

Figure 3. Stream function contours at Ra = lo5 (Y'= 0 - 1 )  -8, -8.5, -9, -9.25, -9.5, -9.6) 
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e=o 

Figure 4. Temperature contours at Ra = lo5(@ = O.O(O.1)l.O) 

(5 X 5) grid at Ra = lo6 was also obtained. Owing to lack of space detailed results are only 
presented for solutions obtained from the (8x8) grid (Figures 3-5 and Tables 1-111). 
However a summary of selected results for all flow situations, and all grids, is given in Table 
IV which includes number of iterations and the convergence tolerance E .  The results of all 
the tables were obtained from the true finite element interpolation on an (81 X 81) grid, thus 
all reported data (except % = jk 6, IF) are nodal values of this subgrid. 

-8 3 
0 0.2 0.4 0 6  0.8 1.0 

Figure 5. Nusselt number variation, along the hot wall (y = 0.0) at Ra = lo5 
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Table 111. Local Nusselt number distribuiion along 
hot wall at y = 0.0 

X ~a = 103 ~a = 104 Ra = 10’ 

0.0 
0-05 
0.1 
0-15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0-8 
0-85 
0-9 
0.95 
1.0 

-0.6912 
-0.6935 
-0.7026 
-0.7212 
-0.7516 
-0.7936 
- 0.8471 
-0.9102 
-0.9801 
-1.055 
-1.132 
-1.207 
-1.279 
-1.345 
-1-401 
- 1.447 
- 1.479 
- 1.497 
- 15057 
-1.505 
-1.503 

-0.5847 
-0.6034 
-0.6658 
-0.7815 
-0.9503 
-1.157 
-1.391 
- 1.642 
-1.900 
-2.156 
-2.408 
-2.649 
-2.874 
-3.078 
-3.252 
-3.389 
-3.480 
-3.516 
-3.490 
-3.422 
-3.382 

-0.7273 
-0.8187 
-1.083 
- 1.502 
-2.007 
-2.498 
-2.949 
-3.394 
-3.824 
-4.223 
-4.627 
-5.032 
-5.429 
-5-847 
-6.234 
-6.636 
-7.005 
-7.302 
-7.531 
-7.462 
-7.361 

Benchmark results for the double-glazing problem, produced for the Venice comparison 
study’ by de Vahl Davis8 are also listed in Table V. These have been modified to be 
consistent with the co-ordinate system presented here. 

The sparse matrix solution routineI4 used in the current version of our code is an in-core 
solution routine. Solutions to the (4 x 4) and (5 x 5) grids were obtained on the CDC-7600 
computer of UMRCC. This computer was, however, unable to satisfy the memory require- 
ments of the (8x8) mesh; the solutions to this were obtained on a DEC VAX 11/750 
computer which is a virtual memory machine. Single precision word lengths were used for all 
real variables in the two computers. However, it should be noted that the single precision 
word length on the CDC-7600 computer is twice that of the DEC VAX 11/750. 

Solutions obtained from the (4 x 4) and (5 x 5) grids on the CDC-7600 computer reflected 
perfectly the symmetric nature of the flow. The solutions obtained from the (8 X 8) grid on 
the DEC VAX 11/750 machine, however, were to a slight degree asymmetric. The degree of 
asymmetry did not seem to increase with Ra, although it did increase with the order of the 
derivative of the variable in question. That is the temperature and stream function fields 
were virtually unaffected and thus symmetric. The velocities and the temperature first 
derivatives were slightly affected (the worst case being ~ 0 . 1  per cent of the value). Finally 
the three second derivatives of the two main variables 4 and 8 were the most affected (the 
worst case being *1 per cent of the value). As a further check on the validity of the DEC 
VAX 11/750 computer solutions, a solution to Ra = lo3 on a (4x4) grid was obtained on 
this computer. This particular solution was compared to its equivalent obtained on the 
CDC-7600 computer. It was found that as far as the parameters of interest, in Tables IV and 
V, were concerned the two solutions were virtually identical, the asymmetries in the second 
derivatives on the VAX were comparable with those from the (8x8) grid above. 
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Table V. The benchmark solution' 

-3.697 
at y =0.178 

3.649 
at x =O.187 

-1.118 

-1.505 
at x = 0.908 

at x = 0.0 
-0.692 

-1.174 

-19.617 
at y =0-119 

at x =0-177 
16.178 

-2.243 

-3.528 
at x =0%7 

at x =0-0 
-0.586 

-5.071 

-68.59 
at y = 0.066 

34-73 
at x =0.145 

-4.519 

-7.717 
at x =O.919 

at x = 0.0 

at 

-0.729 

-9.612 

x = 0.399 
y = 0.285 
-9.111 

-219.36 
at y =0.0379 

at x =0.15 
64-63 

-8.8 

-17.925 
at x = 0.9622 

at x = 0-0 

at 

-0.989 

- 16.75 

x = 0.453 
y = O . 1 5 1  
-16.32 

As noted previously a decoupled (segregated) solution scheme was used. Experience 
showed that a single Newton-Raphson iteration per equation step was appropriate for all 
situations with the latest temperature value only damped for cases of high Ra. Solutions 
above R a  = lo3, for all grids, required increasing degrees of damping. For Ra = lo4 on grids 
(4 x 4) and (8 X 8) the latest temperature update was damped by 40 per cent (i.e. 40 per cent 
old - 60 per cent new). On the (5 x 5) mesh for the same Ra the latest temperature and 
stream function vectors were damped by 30 per cent. At R a  = lo5 80 per cent damping was 
used on the temperature for all grids. The R a  = 106 solution of the (5 X 5 )  grid was only 
possible with very heavy damping of the temperature-95 per cent. It should be noted that 
damping the temperature field was required solely for stability purposes and not for 
accelerating convergence. In fact increasing R a  (and damping) decreased the rate of 
convergence. This can be seen in pictorial fashion in Figure 6 where convergence data from 
the (8x8) grid is presented. As is indicated on this Figure and Table IV, the convergence 
tolerance F was forced to assume smaller values when damping was being used. R i s  was 
done to ensure that the temperature solution had also converged. Note that when heavy 
damping is employed on one parameter (temperature, here) the other (stream function) 
might approach the solution at a much slower rate and give the false impression of 
convergence. Thus, in order to avoid this, the tolerance criterion was made more stringent. 
Further, when this criterion was satisfied the pre and post-damped temperature fields were 
checked to ensure that they were indeed identical. 

The relatively poor convergence characteristics at high R a  for the present method seem to 
be due to the segregated (decoupled) method of solution (cf. Reference 15). This aspect is 
discussed further in the next section. 

The need to damp temperature in the above is strongly signalling the fact that the problem 
is more sensitive to temperature changes than hydrodynamic changes. A small change in the 
temperature field resulted in a large change in the velocity field, whereas the opposite was 
not true for changes in the hydrodynamics. It is felt that this is a reflection of the actual 
physical response characteristics of the double glazing flow problem. Hence in order to 
represent this characteristic correctly, all numerical simulations to this problem should use 
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Figure 6. Convergence criterion; log,, E vs number of iterations 

higher order temperature polynomial representations than velocities. This point may be 
particularly relevant in the primitive variable solution to the problem, where it is standard 
practice to use equal order polynomial representations for velocities and temperature. We 
feel that higher order representations for temperature (in comparison with representations 
for velocity) will improve the convergence and accuracy of the above primitive variable 
simulations. 

Results at Ra = lo6, for the (8 x 8) grid, were not obtained owing to lack of time. 
Computations on the (8 x 8) grid were rather costly in time in that they required half an hour 
of CPU time per iteration on the slower DEC VAX 11/750 machine. An iteration consists 
of a single solution of the Newton-Raphson step for stream function, plus a single solution of 
the temperature equation. An equivalent iteration at any Ra on the (4x4) grid with the 
CDC-7600 required 13 seconds of CPU time. 

The solution to Ra = 106 obtained from the (5  X 5 )  mesh has been included in Table IV 
merely to demonstrate that such a high Ra solution is feasible by the present method. It is 
not claimed, however, that this solution is accurate, and it should not be considered for 
comparison purposes. 
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7. DISCUSSION OF RESULTS AND METHOD 

The results from our finest mesh (8 X 8) compare favourably with those in Table V. This is 
especially gratifying to see since the benchmark results were obtained by extrapolating to  
zero mesh size, from the solution of successively finer grids.' 

A comparison of the total free degrees of freedom shows that the (8 x 8) grid of the 
present study has 731 whereas the finest grid, (81 x 81), of the study of de Vahl Davis* has 
1887 1 free degrees of freedom. This is a further indicator of the resolution capabilities of the 
present method. 

A careful comparison of the present and benchmark solutions, Tables IV and V, reveals 
that there is better agreement between hydrodynamic than thermodynamic quantities. For 
example, at Ra = lo5 the value of the maximum Nusselt number in Table IV is 2.3 per cent 
lower than that of the benchmark value, whereas the worst hydrodynamic discrepancy at the 
same Ra is 0-7 per cent (urnax). 

The question posed about the expected variation of Nu(x) near the extremes of the 
isothermal walls in the final paragraph of Section 5 can now be studied. Figure 5 shows the 
Nusselt number variation along the hot wall at Ra = 10'. It is quite clear from this figure that 
at the two extremes of this curve (corners A and D, see Figure 2) aNu(x)/ax = 0. 

A similar plot by de Vahl Davis' (Figure 2 of his report) at Ra = 106 showed values of 
aNu(x)/ax# 0 at the corner, even with the finest mesh used; (81 x 81). De Vahl Davis 
produced this Figure to demonstrate that in his study the variation of Nu,, with grid 
refinement at Ra=106 was not monotonic. His Figure shows further that there is a 
monotonic increase of the value of the Nusselt number in the corner, which suggests a higher 
value of local Nu there. 

Figure 7 shows an exaggerated version of Figure 5 in the corner region, on this are also 
superimposed the detailed results of WinterssS and Upson et al.", which were kindly 
provided by Winters and P. M. Gresho (Private Communications). 

The results of Winters were calculated at element level, and since he used quadratic 
elements, the temperature gradients are discontinuous across element boundaries. Conse- 
quently the values given at common nodes between two elements were the arithmetic means 
from each side. Upson et al., however, used the consistent flux method" to obtain their heat 
flux levels. 

The solutions produced by the above authors were considered to be among the most 
accurate in the comparison exercise of de Vahl Davis and Jones.I6 It is clear from Figure 7 
that the condition of aNu(x)/ax = 0 at x = 1.0 is not met by the curves of Winters and Upson 
et al. whereas the curve of the present solution is compelled to satisfy this condition exactly. 
Further, the curve of the present solution produces a higher value of local Nusselt number at 
x = 1.0 whereas the value of Nu,, is lower by 2.5 per cent from that of the other two 
contributions. Moreover, the results in Table lV suggest that the value of Nu,, obtained 
from the present solution has converged, with grid refinement, to a tolerance well below a 
2-5 per cent truncation error. 

Both Winters and Upson et al. used the Galerkin finite element method with mesh 
refinement into the corner. Consequently, the imposition of the insulated condition on the 
top and bottom walls was only of the weak form. Similarly in the benchmark solution' no 
equations are solved for the corner nodes themselves. Thus, although these three solutions 
agree to within 0.3 per cent for Nu,, it is not surprising that they fail to satisfy the correct 
condition aNu(x)/ax = 0 at the corner. It is noticeable that the results of Winters15 and 
Upson et tend towards this condition at the lower Ra values, where the present results 
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0 " 0.85 0.9 0.95 x 

Figure 7 .  A comparison of local Nusselt number distributions near the bottom hot wall corner at Ra = lo5 

for Nu,,, are in better agreement. It is our belief that the present results for Nu,, are 
therefore more accurate than the benchmark solution and that the effect of imposing the 
condition aNu(x)/ax = 0 at the corners is to decrease the value of Nu,,, as well as increasing 
the value of Nu in the corner. It is unfortunate that, with the present high-storage solution 
routine, time was not available to obtain results at Ra = lo6 on a finer mesh than (5  X 5) ,  
since the uncertainties in the benchmark Nusselt number values must then be even greater 
than at Ra = lo5. Note that these differences are not noticeable in the region of Nu,,,,. 

In addition to its resolution capabilities, a further merit of the present method is that all 
parameters of interest (i.e. +, u = GY, 1) = -&., w = IL,, + 8 and Nu = 8y~y=o,l) except pres- 
sure are automatically available from the solution. Pressure solutions can be recovered in a 
post processor code, details of this are given by Haroutunian." 

The present method also automatically provides for a higher order polynomial representa- 
tion for temperature than for velocities. In the previous section this was suggested as being 
desirable for better accuracy and convergence. 

In spite of its attractive features, the method suffers from three inherent disadvantages. 
First, setting-up times are somewhat expensive compared to other more conventional finite 
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element methods. However, for a given grid, time can be saved by grouping identical 
elements (as in regular grid situations) and also by using a preprocessor code for obtaining 
element contribution matrices and storing them on magnetic tape for multiple further usage. 
Secondly, since the number of degrees of freedom per node in this method of solution is high 
compared to other methods, the bandwidth of the associated system of discretized equations 
is large. Further, the present decoupled (segregated) solution scheme gives rise to slow 
convergence and necessitates heavy damping for retaining stability at high Ra. A coupled 
(direct) solution scheme as opposed to a segregated one would certainly speed up con- 
vergence and increase stability (less need for damping). However, this will further aggravate 
the problem relating to storage requirements in that it will increase the DOF per node, and 
hence the bandwidth, by a factor of two. A more viable alternative is to adopt the technique 
used by Gartling.” In his solution to the double glazing problem using a segregated type 
solution to the primitive variables formulation, he had to change from a steady state type 
approach to a time-dependent scheme (still retaining his segregated scheme) in order to 
obtain solution for the Ra>104. Such a scheme also seems attractive here and should 
similarly improve the stability and radius of convergence characteristics of our method. Note 
that the problem seems less acute with the present formulation, since Gartling only reports 
steady state type solutions up to Ra = lo4, whereas results were obtained up to Ra = 106 
here. The problem of large bandwidths for finer grids would however still remain. This 
problem can be tackled by using disc based (out of core) solution routines. 

The final disadvantage of the method is that the stream function formulation strategy will 
not extend in a straightforward fashion to three dimensions (c.f. Reference 10). Indeed, it 
seems unlikely that such an extension could be a practicable proposition. 

8. CONCLUSIONS 

The stream function solution to the two-dimensional double-glazing problem, in conjunction 
with the 18 DOF truncated quintic triangular finite element, shows considerable promise by 
producing accurate results on relatively coarse meshes. In contrast to most conventional 
solution methods, the imposition of the insulation boundary condition can be achieved in 
pointwise fashion all along the insulated walls. As a direct consequence of this, it is argued 
that the Nu,, values produced at high Ra by this simulation are more accurate than the 
benchmark values.8 In addition, the relative orders of representation of velocity and 
temperature have a favourable effect on the accuracy of the temperature solution. 
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